
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.9 – Security

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 28.06.2017

Is your system secure?

Security: A condition that results from the

establishment and maintenance of protective
measures that ensure a state of inviolability
from hostile acts or influences. [Wikipedia]

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 28.06.2017

Security Defined by Policy

Examples

All users have access to all objects

Physical access to servers is forbidden

Users only have access to their own files

Users have access to their own files, group access files, and
public files (UNIX)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 28.06.2017

Authentication Authorization

Security Policy

Specifies who has what type of access to which
resources

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 28.06.2017

All Access is via IPC

What microkernel mechanisms are needed for security?

How do we authenticate?

How do we perform authorization?

How do we implement arbitrary security policies?

How do we enforce arbitrary security policies?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 28.06.2017

Authentication

Unforgeable endpoint identifiers

Thread ID of sender returned by kernel

Capabilities generated by kernel

Thread identifiers can be mapped to

Tasks

Users

Groups

Machines

Domains

Authentication is outside the microkernel – any policy can be
implemented

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 28.06.2017

Authorization

Servers implement objects; clients access objects
via IPC

Servers receive unforgeable client identities from
the IPC mechanism

Servers can implement arbitrary access control policy

No special mechanisms needed in the microkernel

Is this really true???

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 28.06.2017

Example Policy

Multi Level Security (MLS) – Confidentiality

Assign security levels to objects
Top Secret, Secret, Classified, Unclassified

TS > S > C > UC

Assign security levels to subjects (users)

Top Secret, Secret, Classified, Unclassified

Subject S can read object O iff
level (S) ɟ level (O)

Subject S can write (append to) object O iff
level (S) ɞ level (O)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 28.06.2017

Example Policy

Multi Level Security (MLS) – Confidentiality

Server

C
UC

S TS

Client (UC)

Client (C) Client (S)

Client (TS)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 28.06.2017

Problem

Client (UC)

Server

C
UC

S TS

Client (C) Client (S)

Client (TS)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 28.06.2017

Conclusion

We need mechanisms to not only implement a
policy – we must also be able to enforce a policy

Mechanism must be flexible enough to implement
and enforce all relevant security policies

To control information flow we must

control communication.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 28.06.2017

Confinement

B

A

C

D

Confined Subsystem

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

13 28.06.2017

 CLANS & CHIEFS

The Traditional L4 Approach

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 28.06.2017

clan
chief

tasks

Clans & Chiefs

A clan is a set of tasks
headed by a chief task

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 28.06.2017

clan
chief

tasks

Intra-Clan IPC

Direct IPC by microkernel

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 28.06.2017

clan
chief

tasks

Inter-Clan IPC

Microkernel redirects IPC to next chief

Chief (user task) can forward IPC or modify or …
Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

Direction-Preserving Deceiving

“from T2”

“from T2”

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C2?

I have to …

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C1?

I have to …

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 28.06.2017

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust T2?

I decide …

Direction-Preserving Deceiving

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 28.06.2017

Secure System Using Clans & Chiefs

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S)

Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Chief

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 28.06.2017

Node A Node B

Remote IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 28.06.2017

Problems with Clans & Chiefs

Static

A chief is assigned when task is started

If we might want to control IPC, we must always assign a chief

General case requires many more IPCs

Every task has its own chief

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 28.06.2017

The Most General System Configuration

Even if a pair could communicate
freely we still require 3 IPCs where
one would suffice

Client

Client

Client

Client

Chief

Chief

Chief

Chief

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 28.06.2017

 GENERIC IPC REDIRECTION

Flexibility and Dynamic
Reconfiguration

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 28.06.2017

IPC Redirection

Source

Intermediary

Destination

IPC fails

For each source and destination we actually deliver to
X, where X is one of

Destination

Intermediary

Invalid

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 28.06.2017

IPC Redirection

If X = Destination

We have a fast path when source and destination can
communicate freely

Source Destination

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 28.06.2017

IPC Redirection

If X = Invalid

We have a barrier that prevents communication completely

Source Destination

IPC fails

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 28.06.2017

IPC Redirection

If X = Intermediary

Enforce security policy

Monitor, analyze, reject, modify each IPC

Audit communication

Debug

Source

Intermediary

Destination

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 28.06.2017

Deception

Intermediaries must be able to deceive the destination into
believing the intermediary is the original source

An intermediary (I) can impersonate a source (S) in IPC to

a destination (D)
I [S] D

If Redirection (S, D) = I, or

Redirection (S, D) = X and I [X] D (recursive)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 28.06.2017

Deception: Case 1

I [S] D if Redirection (S, D) = I

Source

Intermediary

Destination

From Source

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

35 28.06.2017

Deception: Case 2

I [S] D if Redirection (S, D) = X,
and I [X] D (recursive)

Source Destination

From Source

Intermediary

X

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 28.06.2017

Secure System Using IPC Redirection

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S) Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Redirection

Controller
(trusted)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 28.06.2017

Clans & Chiefs Using IPC Redirection

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S)

Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Chief

Redirection

Controller
(trusted)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 28.06.2017

General IPC Redirection

Issues

Recursive operation

Can be expensive

Centralized controller

Possible bottleneck

Massive redirection
structures

N×N array (N = num. threads)

S

I1

I2

I3

D

From S?

RC
C1

C2

C3

C4 C5

C6

C7

C8

C9

C10

C11

C12

N

N

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 28.06.2017

 CAPABILITIES

Decentralized IPC Management

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 28.06.2017

Communication Spaces

Current Model: Single Global Space

A1

A2

B1

B2

 Direct naming using global

thread ID

 Extremely fast (no indirection)

Must be able to restrict

access rights on a per address

space basis

TCB area

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 28.06.2017

Communication Spaces

Possible Solution: Per Space Access Rights

A1

A2

B1

B2

 Need a per space table lookup

 Might as well add indirection

TCB area A
or LUT

TCB area B
or LUT

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 28.06.2017

B1

Communication Spaces

Better Solution: Per Space Capability Array

A1

A2

B2

A1

A2

B2

B1

A1

A2

B2

B1

LUT LUT

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 28.06.2017

Capabilites

Capabilites encode the right to perform a specific
operation on a specific kernel object

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel
IPC-

gate

IPC-

cap

Invoke

Send

Operating Systems Group

Department of Computer Science

44 28.06.2017

Capability properties

Capabilities contain

Pointer to a kernel object

Access rights

Capabilities live in kernel space

Not directly accessible to user

Referenced by index in per-AS capability array

Capabilities provide:

Fine-grained access control

Local naming (name = idx in capability array)

Index has no meaning in other ASes!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 28.06.2017

Creating capabilites

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel

Factory Factory-cap

Invoke

create(type)

Object Object-cap

Alloc

map(cap)

Caller must have a

receive window set up

Operating Systems Group

Department of Computer Science

46 28.06.2017

Communication Spaces with capabilites

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

A0 B0 C0 C1

map

map

map

map

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

47 28.06.2017

Mapping Communication Rights

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

A0 B0 C0 C1

map B2

A does not possess

rights on B2

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 28.06.2017

Revoking Communication Rights

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C1

A0 σ0 C0

A0 B0 C1 C0

C0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

49 28.06.2017

Revoking Communication Rights

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C1

A0 σ0 C0

B0 C1 C0

C0 A0 unmap

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

50 28.06.2017

Revoking Communication Rights

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C1

A0 σ0

B0 C1

C0 unmap

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

51 28.06.2017

Virtual Communication Spaces

Arbitrary Thread ID Layout

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

A0 B0 C0 C1

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

52 28.06.2017

Virtual Communication Spaces

Arbitrary Thread ID Layout

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

B0 C0 C1 A0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

53 28.06.2017

Virtual Communication Spaces

Arbitrary Thread ID Layout

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

A0 B0 C0 C1 B0 B0 A0

σ0 C1

A0 A0 C0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

54 28.06.2017

Virtual Communication Spaces

Decentralized access control

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

B0 B1 B2 C0 C1

A0 C0

A0 B0 C0 C1 B0 B0 A0

C1

A0 A0 C0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 In reality, there is

no root pager for

capabilities

 Threads hand out

capabilities to

themselves

Operating Systems Group

Department of Computer Science

55 28.06.2017

Bootstrapping

Parent fills child’s capability array on launch

Parent receives thread capability for child

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

A0 C0 A0 σ0 Child

A0 σ0 C0 A0 A0 C0 Parent B0

Operating Systems Group

Department of Computer Science

56 28.06.2017

Confinement (revisited)

B

A

C

D

 Can map

communication

rights

 Can map writable

memory

 Need ability to

restrict such

mappings

 Restricted via

map-right

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

57 28.06.2017

Capabilites: Implications on IPC Performance

Need table lookup (indirection) to find destination
thread

Table lookup needed anyway to check rights

Implications of indirection for TCB lookup

− One more cache line access per IPC

+ Smaller TLB footprint (sometimes, cf. mkc-03-aslayout)

TLBs usually smaller than caches

TLB misses often more expensive than cache misses

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

58 28.06.2017

Capability array

Lookup on each IPC
invocation

Must be extremely efficient

Avoid any excess indirection

Indirection increases

Cache footprint

Number of direct and/or
indirect cache misses

Implemented via Virtual
Linear Array (VLA)

Lookup into dedicated virtual
memory area

Area with a valid mapping
backed by dedicated page
frame

Area with no valid mapping
backed by zero page

All read accesses return
zero

Cf. 0-mapping trick

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

59 28.06.2017

Capability Array

n m r q p s

Physical Memory

Capability array

0

Implemented via Virtual
Linear Array (VLA)

Lookup into dedicated virtual
memory area

Area with a valid mapping
backed by dedicated page
frame

Area with no valid mapping
backed by zero page

All read accesses return
zero

Cf. 0-mapping trick

valid capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

60 28.06.2017

All Access is via IPC (revisited)

What microkernel mechanisms are needed for security?

How do we authenticate?

Sender’s ID revealed on IPC

Sender ID is unforgeable

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

61 28.06.2017

All Access is via IPC (revisited)

What microkernel mechanisms are needed for security?

How do we authenticate?

How do we perform authorization?

Give thread rights to communicate via mappings

Revoke rights to communicate via unmap

Individual servers can decide on fine grained policies

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

62 28.06.2017

All Access is via IPC (revisited)

What microkernel mechanisms are needed for security?

How do we authenticate?

How do we perform authorization?

How do we implement arbitrary security policies?

Authorization performed completely in user-level

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

63 28.06.2017

All Access is via IPC (revisited)

What microkernel mechanisms are needed for security?

How do we authenticate?

How do we perform authorization?

How do we implement arbitrary security policies?

How do we enforce arbitrary security policies?

Any communication requires the appropriate communication
right

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

64 28.06.2017

KERNEL SECURITY

How to secure system calls and kernel resources

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

65 28.06.2017

Problems with the kernel

We can stop applications from attacking each other

What about applications attacking the kernel?

DoS anyone?

What about the kernel attacking applications?

Can’t help it! The kernel is all-powerful

What about applications attacking each other through the
kernel?

Kernel needs to restrict access to its functions

Remember: No policy in the kernel!

Need to restrict access to kernel functions from userland

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

66 28.06.2017

System call indirection in Pistachio

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Args TC MR0 MR1 MR2 MR3 MR4 Args TC

ThreadControl(args)

Operating Systems Group

Department of Computer Science

67 28.06.2017

System calls in Fiasco.OC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

Thread cap
MR0 MR1 MR2 MR3 MR4

Thread object

Args

Invoke

In Fiaso.OC,

everything is IPC!

TC

Operating Systems Group

Department of Computer Science

68 28.06.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

MR0 MR1 MR2 MR3 MR4

Roottask

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

69 28.06.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

Thrd-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

70 28.06.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

Thrd-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

TC

Operating Systems Group

Department of Computer Science

71 28.06.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

MR0 MR1 MR2 MR3 MR4

Roottask

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

72 28.06.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

73 28.06.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

TC

Operating Systems Group

Department of Computer Science

74 28.06.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Invoke

Args

Thread object

TC TC

Operating Systems Group

Department of Computer Science

75 28.06.2017

Kernel resource management

Apps with access to some syscalls can exhaust kernel
resources

No choice but to filter every call

Really?

Solution: Make apps use their own memory for syscalls!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

76 28.06.2017

SeL4 kernel memory

Everything is a kernel object

Can retype kernel objects

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel

Frame-

cap

retype

Frame

Operating Systems Group

Department of Computer Science

77 28.06.2017

SeL4 kernel memory

Everything is a kernel object

Can retype kernel objects

Retyping grants memory to kernel

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel TCB

Frame-

cap

retype

Operating Systems Group

Department of Computer Science

78 28.06.2017

SeL4 kernel memory

Everything is a kernel object

Can retype kernel objects

Retyping grants memory to kernel

App retains capability to retyped object

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel TCB

Frame-

cap

TCB-

cap

Operating Systems Group

Department of Computer Science

79 28.06.2017

SeL4 kernel memory

App retains capability to retyped object

App can revoke retyping

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel TCB

Frame-

cap

revoke
TCB-

cap

Operating Systems Group

Department of Computer Science

80 28.06.2017

SeL4 kernel memory

App retains capability to retyped object

App can revoke retyping

Destroys the referenced kernel object

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel

Frame-

cap

revoke
TCB-

cap

Operating Systems Group

Department of Computer Science

81 28.06.2017

SeL4 kernel memory

App retains capability to retyped object

App can revoke retyping

Destroys the referenced kernel object

App can re-use memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel

Frame-

cap

revoke

Frame

Operating Systems Group

Department of Computer Science

82 28.06.2017

SeL4 kernel memory

Applications must provide memory for everything they
need from the kernel

Threads, page tables, Cap-array, IPC endpoints, …

Applications cannot DoS the kernel, only themselves

No kernel memory manager needed

Simplifies proof!

Kernel needs some memory before applications exist

E.g., code, kernel stack

Strictly bounded => provable

More complex capability management

Must remember retype history => Capability derivation tree

 Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

83 28.06.2017

Summary

Clans & Chiefs: Static, inefficient

Generic IPC redirection: Centralized

Capabilities:

Fine-grained control

Decentralized management (& naming)

Capabilities to kernel objects

System call indirection (everything is IPC)

Application memory for kernel services

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

